Parameter identification for elliptic problems
نویسندگان
چکیده
منابع مشابه
Parameter Identification for Nonlinear Ill-posed Problems
Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can ide...
متن کاملIdentification problems in distributed parameter neuron models
-One-dimensional cable theory provides the theoretical framework to evaluate the role of linear electrical membrane properties and dendritic geometry in neuronal signal reception and processing. This article presents the basic physical principles as well as mathematical problems arising in neuronal modelling. The main types of passive dendritic neuron models are reviewed and their use in explor...
متن کاملEquidistribution grids for two-parameter convection–diffusion boundary-value problems
In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...
متن کاملA Priori Error Estimates for the Finite Element Discretization of Elliptic Parameter Identification Problems with Pointwise Measurements
We develop an a priori error analysis for the finite element Galerkin discretization of parameter identification problems. The state equation is given by an elliptic partial differential equation of second order with a finite number of unknown parameters, which are estimated using point-wise measurements of the state variable.
متن کاملAn Efficient Linear Solver for Nonlinear Parameter Identification Problems
In this paper, we study some efficient numerical methods for parameter identifications in elliptic systems. The proposed numerical methods are conducted iteratively and each iteration involves only solving positive definite linear algebraic systems, although the original inverse problems are ill-posed and highly nonlinear. The positive definite systems can be naturally preconditioned with their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2001
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00275-2